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Explainable text‑tabular models 
for predicting mortality risk 
in companion animals
James Burton 1*, Sean Farrell 1, Peter‑John Mäntylä Noble 2 & Noura Al Moubayed 1,3

As interest in using machine learning models to support clinical decision-making increases, 
explainability is an unequivocal priority for clinicians, researchers and regulators to comprehend 
and trust their results. With many clinical datasets containing a range of modalities, from the free-
text of clinician notes to structured tabular data entries, there is a need for frameworks capable of 
providing comprehensive explanation values across diverse modalities. Here, we present a multimodal 
masking framework to extend the reach of SHapley Additive exPlanations (SHAP) to text and tabular 
datasets to identify risk factors for companion animal mortality in first-opinion veterinary electronic 
health records (EHRs) from across the United Kingdom. The framework is designed to treat each 
modality consistently, ensuring uniform and consistent treatment of features and thereby fostering 
predictability in unimodal and multimodal contexts. We present five multimodality approaches, with 
the best-performing method utilising PetBERT, a language model pre-trained on a veterinary dataset. 
Utilising our framework, we shed light for the first time on the reasons each model makes its decision 
and identify the inclination of PetBERT towards a more pronounced engagement with free-text 
narratives compared to BERT-base’s predominant emphasis on tabular data. The investigation also 
explores the important features on a more granular level, identifying distinct words and phrases that 
substantially influenced an animal’s life status prediction. PetBERT showcased a heightened ability 
to grasp phrases associated with veterinary clinical nomenclature, signalling the productivity of 
additional pre-training of language models.

Life expectancy serves as a fundamental metric for understanding human and animal populations’ overall health 
and well-being1. Understanding life expectancies permits insights into the health status of a populace and aids 
in the identification of health disparities and inequalities between specific regions. Tools designed for monitor-
ing mortality play a vital role in assisting researchers in pinpointing events occurring earlier in life that may 
reduce overall lifespan. Nevertheless, national mortality rates for companion animals are not subject to regular 
monitoring. The surveillance of electronic health records (EHR) collected from primary-care veterinary practices 
represents a valuable means to gain insights into companion animals’ current population health status. Initiatives 
such as the Small Animal Veterinary Surveillance Network (SAVSNET) have played a pivotal role in establishing 
accessible, real-time, first-opinion clinical EHRs on a national scale in the United Kingdom2. Despite their poten-
tial, it is challenging to harness the total utility of first-opinion veterinary EHRs on a large scale. The implementa-
tion of disease coding frameworks, while advantageous for researchers, often proves counter-intuitive in clinical 
practice and impractical for everyday use. Previous studies have underscored records annotated by clinicians as 
part of their routine responsibilities as being particularly susceptible to inaccuracies and omissions3,4. Adopting 
an unstructured, free-text format in contemporary veterinary EHRs while affording clinicians greater linguistic 
flexibility presents challenges in developing automated systems5,6. Moreover, veterinary practices typically do not 
have dedicated staff for disease coding, resulting in distinct naming conventions and practice-specific clinical 
narrative structures, thereby needing more harmonisation in recording clinical variables. In response to these 
challenges, a pressing need exists to establish fixed, tabular data points for clinical events that do not impose 
additional complexity on clinicians’ responsibilities whilst facilitating downstream data analysis.

Recent advancements in Natural Language Processing (NLP) have significantly improved a wide range of 
text-driven tasks. A pivotal breakthrough in this domain is the integration of the transformer architecture, 
featuring the self-attention mechanism7. This architectural paradigm was initially realised in the Bidirectional 
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Encoder Representation for Transformers (BERT)8, marking the dawn of a new era characterised by state-of-the-
art performance in various NLP benchmarks9,10. Integrating such language models into the analysis of clinical 
narratives is not a novel concept11. Prior research has demonstrated their efficacy in a diverse array of NLP tasks, 
including relation extraction12, named entity recognition13,14, and sequence classification for disease coding15,16. 
Similarly, for tabular data, there exists a diverse set of methodologies, such as gradient boosting methods, includ-
ing XGBoost17, and deep learning approaches, such as TabNet18. These, too, have been explored for a diverse set 
of tasks such as prediction-based modelling for hypertension19 and survival analysis20. The utilisation of deep 
learning modelling within the clinical domain has been widely explored, with examples including intensive care 
patient management21, hospital mortality prediction22, predicting infections such as COVID-1923 and sepsis24, 
and decisions related to performing medical procedures such as when to mechanical ventilate25, among others.

However, a significant obstacle to trusting the results from deep learning models for use within a clinical 
setting is their lack of explainability, preventing much of the above research from leaving the proof-of-concept 
stage. Many associated challenges, including bias mitigation and the generalisability of these models, can be 
traced back to the fundamental issue of incomplete model interpretability26. These issues are further exacerbated 
when considering data sources from multiple modalities, such as text and tabular data, for use within machine 
learning frameworks. Nonetheless, these distinct data types frequently harbour a wealth of intricate signals where, 
in some instances, consolidating these data types can enhance overall predictive accuracy as they synergisti-
cally complement each other, resulting in a more robust and comprehensive prediction model. In the clinical 
domain, we find compelling instances of multimodal models that have harnessed this diversity. For instance, in 
the identification of cataract cases27, innovative approaches have combined free-text electronic medical records, 
structured tabular data, and scanned clinical images, resulting in a notable enhancement in model performance 
relative to their single modality counterparts. Where deep learning model studies have been designed to lever-
age available patient data, combining free-text notes from medical professionals with tabular data points, the 
already limited arsenal of conventional explainability frameworks, such as LIME28 or SHAP29, is insufficient, as 
they can only address one modality at a time. Consequently, a compelling need arises to develop comprehensive 
explainability systems for deep learning models in clinical contexts that capture all the available data and ensure 
that healthcare practitioners make clinical decisions with confidence and trust.

This paper builds upon our previous research by applying a novel multimodal masking framework that 
extends the applicability of SHapley Additive exPlanations (SHAP) to text-tabular datasets within the veteri-
nary clinical domain30. We apply a range of combination methodologies within the framework to merge these 
differing modality types and, in doing so, outperform the previously proposed methodology. Through feature 
masking based on their respective modalities, our framework ensures consistent treatment of features, fostering 
predictability in unimodal and multimodal contexts. In this study, we apply our framework to a dataset of EHRs 
sourced from first-opinion veterinary practices across the UK. Our research explores a comparative analysis, 
highlighting the effectiveness of additional fine-tuning processes, exemplified by PetBERT - a large language 
model tailored to veterinary clinical records. Our findings demonstrate its superior performance over general 
corpora models like BERT-base in tasks specific to our domain. The investigation delves into the unique words, 
phrases and individual tabular values to directly compare which characteristics significantly affect the predic-
tion of an animal’s living status. By incorporating multiple modalities, including breed, age, deprivation scores, 
and clinical narratives, we unveil the features contributing to increased mortality risk. The implications of this 
research extend beyond animal welfare, highlighting the potential of a multimodality explanation framework 
applicable across diverse tasks.

Background
Dataset
Electronic health records have been collected since March 2014 by SAVSNET, comprising a sentinel network of 
253 volunteer veterinary practices found across the United Kingdom. A full description of SAVSNET has been 
presented elsewhere2. Generally, veterinary practices with practice management software compatible with the 
SAVSNET data exchange are recruited based on convenience. Within these participating practices, data is col-
lected from each booked consultation (where an appointment has been made to see a veterinary practitioner 
or nurse). All owners attending these practices can opt out of data collection at the time of consultation. Data is 
collected on a consultation-by-consultation basis and includes information such as species, breed, sex, neuter 
status, age, owner’s postcode, insurance and microchipping status and, crucially to this study, a free-text clinical 
narrative outlining the events that occurred within that consultation. Appended to all the SAVSNET EHR data-
sets are high-level International Classification Disease 11 (ICD) codings. These syndromic labels can provide a 
broad overview of the themes within the clinical narrative, a free-text field. A full explanation of how these were 
derived is explained elsewhere31. Sensitive information, such as personal identifiers, was cleaned from the data. 
SAVSNET has ethical approval from the University of Liverpool Research Ethics Committee (RETH000964).

BERT and PetBERT
BERT-base was previously pre-trained on a combination of Wikipedia and BookCorpus8. During pre-training, 
BERT-base performed two tasks simultaneously: Masked Language Modeling (MLM) and Next Sentence Predic-
tion (NSP). In the MLM task, words within a sentence were randomly replaced with a [MASK] token, with a 15% 
probability across the entire dataset. The model’s objective was to predict the original or a similar word in place 
of the [MASK] token. For the NSP task, sentences were randomly split and combined either with the original 
sentence or with a random sentence, separated by a [SEP] token. The goal was to determine if the combined 
sentences made sense or not.
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PetBERT was formed by taking the pre-trained BERT-base model and undertaking additional pre-training 
(also performing MLM and NSP) on a large dataset of over 500 million tokens from the SAVSNET first opinion 
veterinary corpus, exposing it to clinical language used in veterinary contexts. A more detailed explanation of 
the training process can be found elsewhere31. It is these pre-trained BERT and PetBERT models that will be 
fine-tuned on the classification task in the subsequent analysis.

Multimodal SHAP
To uncover the most important features for the model to predict the animal’s given mortality risk, we employ our 
novel multimodal SHAP that was first introduced in30. Using this tool, we can produce SHAP explanations for 
the text-tabular SAVSNET dataset for the first time. SHAP is a game theory-based technique based on simulating 
the presence and absence of coalitions of features to assess the impact on the outcome variable29. The original, 
unimodal SHAP library is limited to explaining one modality at a time. For text, absent features are replaced 
with a [MASK] token, whereas tabular features—where “empty” or N/A values are not always modelled—are 
simulated as absent by sampling from a background dataset and integrating over the marginal distribution. When 
using unimodal SHAP, the only time it is feasible to generate explanations from a multimodal dataset is when 
the input is preformed into a single modality: text. However, this leads to the problematic grouping of features 
and importance assigned to ever-present, non-feature input. Multimodal SHAP30 brought the two approaches 
into a single framework so that text and tabular features are treated distinctly, consistent with how they would 
be in an unimodal scenario. This enables the direct comparison of words and phrases within the text features 
against tabular features for any method of combining the two modalities.

Methods
Data extraction
To curate the datasets for training the initial component of the predictive mortality models, we searched for nar-
ratives containing references to death or euthanasia. This search used a generalised Python regular expression 
to identify pertinent terms, including “euthanasia”, “put to sleep (PTS)”, and “died”. The detailed regex pattern 
is provided below.

euth|dead|died|pts|put to sleep|pento|doa|crem|burial|bury|qol|quality|ashes|scatter|casket

Subsequently, from this dataset, we performed random sampling to select 250 cases that were suspected to involve 
mentions of death or euthanasia. These selected cases underwent manual inspection to validate whether they 
conformed to the predefined case definition of “declaration of death occurring within the consultation”. Nota-
ble instances of false positives included conversations of potential future euthanasia events or instances where 
euthanasia was discussed in an advisory context by the attending practitioner. Instances where the euthanasia 
event did not occur within the same consultation were excluded or used as the controls in equal proportion to the 
number of cases. The EHR data used in this study offers valuable insights into death occurrences among the dogs 
and cats analysed. However, the depth of our analyses is contingent upon the information recorded by the veteri-
nary practitioners. Consequently, our models are limited to capturing only those conditions or events explicitly 
documented in the EHRs. Any unrecorded or overlooked aspects cannot be accounted for in our analysis.

A semi-supervised teacher-student model approach was adopted in line with the methodology employed by 
Yalniz et al.32. This approach used a small subset of manually annotated records to train a small binary sequence 
classification model, which achieved an F1 Score of 98.3% on the test set. This model was subsequently applied 
to the entire dataset to identify animals meeting the criteria. To ascertain the effectiveness of this extraction 
method, a random sample of 200 records was independently reviewed by a practising clinician to validate the 
model’s performance and suitability for the continuation of the study. For the animals identified to have died 
by the aforementioned binary sequence classification task, we took the consultation preceding the declaration 
of death. To create a balanced dataset, animals stated to be alive by the binary sequence classification model 
were pulled at equal quantities to the number of animals that had died. Narratives for cases where the animal 
had only a single narrative in its history (the one detailing its death) were discarded. Within both the case and 
controls, where incomplete data exists, such as missing breed, age, sex, geographical information, or where an 
animal appeared in both case and control datasets, these records were also deleted. All high-level ICD codings 
that the animal has previously amassed were summed together. We used the frequencies of each ICD coding 
to represent each animal’s approximate clinical history and maximise the availability of tokens available for the 
penultimate clinical narrative for PetBERT. The dataset contains many tabular features, such as age, breed, and 
sex, which were likely to play a role in supporting the model’s prediction capabilities. Features used in this study 
are found in Table 1.

Datasets were split into training and testing based on an 80:20 split. The 20% of records used for the testing 
set was pulled from ≈2.1 million annotated records that were not used in the initial pre-training of PetBERT31. 
This ensured the model’s weightings were generalisable to all first-opinion clinical narratives, so no element of 
these testing sets had been pre-exposed to the model in any form.

Model training
We determine whether an animal known to have died within 28 days of the last given consultation can be iden-
tified using all five combination methods used in the original study30, first with BERT as the language model 
and then repeat with PetBERT as the language model, for a total of 10 experiments. SAVSNET data contains a 
mixture of free-text and tabular features, so in this study, we utilise five different methods of training a model 
with both modalities. Figure 1 outlines the combination methods. Following the original study, we use the All-
Text approach, three Weighted-Ensembles models and a Stack-Ensemble. In the All-Text approach, all features 
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are fit to a string template and fed to a large language model; we use the same format as in Multimodal SHAP30, 
namely: Column name 0: Column value 0 | Column name 1: Column value 1 | .... For the Weighted-Ensembles, 
text and tabular models are trained separately, and their predictions are combined in weighted sum, with w as 
the weight of the text model prediction and 1-w as the weight of the tabular model prediction). We experiment 
with three values of w: 0.25, 0.50 and 0.75. The Stack-Ensemble method also requires separately trained text and 
tabular models but also has a third model, a meta-model, trained on the tabular features and the text and tabular 
predictions using the validation set. To avoid extensive one-hot encoding, or ordinally encoding variables with 
no linear relationship, we treat features with more than 30 unique values as text features; specifically, this was 
utilised for the breed and region features. These are conjoined with the free-text clinical narrative using the same 
text template outlined in the All-Text method. The aim is to understand which features, whether words or phrases 
within the free-text clinical narrative, or numerical or categorical entries within the tabular data, are important 
in making a prediction. All tabular and meta-models are light gradient boosting classifiers33.

Model evaluation
For each text model-combination method pair, we evaluate the performance against a test dataset selected from 
the 2m records set aside from the initial pre-training of PetBERT. Therefore, this test set contained records that 
had not been seen by PetBERT in either the initial masked learning step or in the downstream classifications 
step. Values were compared using the animals’ true mortality outcome as a baseline result. Following the original 
PetBERT paper34, we report performance using the F1 score, see Table 2. For added information, we also report 
accuracy in Table 3.

Table 1.   Each of the 31 variables from the SAVSNET dataset that are used in this analysis.

Variables included in the analysis

Clinical narrative (written by veterinary clinician)

General features:

   Age at consult; Breed; Species; Gender; Insured status; Neutured status; Region (of owner’s postcode); Practice ID; Premise ID

Indicators of a disease, a condition or disorder involving:

   Circulatory system; dental; development; digestive system; endocrine, nutritional or metabolic disorders; immune system; neurodevelopment; infectious or parasitic diseases; 
skin; musculoskeletal or connective tissue;    visual system; perinatal conditions; pregnancy, childbirth or puerperium; ears; blood-forming organs; respiratory system; injuries; 
poisoning or external causes; genitourinary system; neoplasms; nervous system

Figure 1.   Combination methods used in this study as proposed in the original methodology30. Left: a Weighted-
Ensemble. Middle: a Stack-Ensemble. Right: All-Text.

Table 2.   Test set F1 scores for all models. We also report the scores when only the text columns are used to 
train the language models, labelling this All Text (Txt fts only).  WE Weighted-Ensemble. Significant values are 
in bold.

Stack WE w=0.25 WE w=0.50 WE w=0.75 All Text All Text (Txt fts only) Tab Model

Petbert 0.828 0.823 0.844 0.828 0.831 0.811 0.802

BERT 0.821 0.823 0.828 0.800 0.823 0.783 0.802
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Generating SHAP values
Our goal is to explore the reasons for the similarities and differences in the performances and investigate why 
PetBERT outperformed BERT for each of the five combination methods. To do so, we generate SHAP values for 
each combination of the two independent variables: combination method (CM) and text model (TM). To isolate 
the differences in explanations to the independent variables, we choose the same 1000 randomly selected test-set 
examples to be explained for each TM-CM combination.

Results
To account for the variations observed in label counts and token quantities across all instances, we utilise a 
process similar to those developed within the original SHAP package’s summary plot function. Whereas tabular 
features produce a single SHAP value, text features produce a SHAP value for each word piece. Therefore, we 
sum the SHAP values. Specifically, there are T tokens for each instance, each belonging to one of F features. Each 
token has associated SHAP values for L labels, which for this binary classification task is 2. First, the SHAP values 
for each token are summed, t ∈ T , belonging to a feature, f ∈ F before converting to the absolute value and sum 
across each of the two labels, l ∈ [alive, dead] . Therefore, a single SHAP value for each feature in each instance 
indicates how important the feature was to the model. We refer to this as feature importance or φ.

Which features are the most important?
Typically, to see how important a feature is across the entire dataset, one would use a SHAP summary plot, which 
shows mean absolute SHAP values for each feature, averaged across the entire dataset. In our analysis, we use 
mean absolute φ . To compare across experiments, for each TM-CM pair, we plot mean absolute φ as a proportion 
of the sum of all mean absolute φ for that pair. This is shown in Fig. 2.

For each of the three Weighted-Ensembles, we see a linear increase in the reliance on textual features as w, the 
text model weighting, increases, a pattern we see for both BERT and PetBERT. When w = 0.25, we see age at con-
sult as the most important feature overall, whereas for w = 0.50 and 0.75, clinical narrative is the most important. 
The Stack-Ensembles follow the pattern of PetBERT relying on clinical narrative more than BERT, however with 
age at consult as the most influential feature. The All-Text models represent the only experiments where tabular 
features are fed into a text model. These results demonstrate that despite this, language models can indeed extract 
use out of tabular features with both PetBERT All-Text and BERT All-Text focusing on age at consult the most.

(1)φf = |
∑

t∈f

SHAPvaluet,l=alive| + |
∑

t∈f

SHAPvaluet,l=dead|

Table 3.   Test set accuracy scores for all models. We also report the scores when only the text columns are used 
to train the language models, labelling this All Text (Txt fts only).  WE Weighted-Ensemble. Significant values 
are in bold.

Stack WE w=0.25 WE w=0.50 WE w=0.75 All Text All Text (Txt fts only) Tab Model

Petbert 0.820 0.810 0.832 0.814 0.823 0.794 0.789

BERT 0.807 0.810 0.817 0.785 0.816 0.766 0.789

Figure 2.   Mean absolute feature importance, by feature, as a proportion of the sum of all mean absolute feature 
importance. Each row indicates the proportion for a particular model, as indicated on the y-axis. We look across 
all experiments to find the six most influential features, colouring the remaining features as lime-green in an 
other category. The size of each coloured bar indicates the feature’s relative overall importance to the particular 
model, with cumulative proportion on the x-axis. The order of the colours is the same for each row, in order of 
highest to lowest proportion across all experiments.
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How similarly are features ranked?
In this section, we look at how statistically similar the rankings of features are for a given instance. To do so, we 
use Kendall’s rank correlation coefficient35, or Kendall’s τ . This is a non-parametric test that does not consider 
the size of a particular value but simply the relative ranking, making it suitable for comparison across different 
methods and models. An identical ranking of features will score 1, and an opposite ranking will score −1.

In Fig. 2, results were averaged across all instances and then reported. Here, we calculate Kendall’s τ for each 
instance and then average, reporting the mean and standard deviation of the statistic to facilitate a more nuanced 
examination. In Tables 4, 5 and 6, for a particular comparison, we will calculate τ between the two rankings for 
each of the 1000 instances and then report the mean and standard deviation of those 1000 scores in the table. 
In Table 4, for each of the five combination methods, we compare the similarity between rankings when using 
BERT versus PetBERT. In Table 5, we compare each of the five combination methods against each other when 
fixing TM=BERT, whereas in Table 6 we do the same but fix TM=PetBERT.

Following evidence in Fig. 2 of both All-Text models focusing almost entirely on two features, we see these 
models as the most dissimilar to other combination methods with scores between 0.43 and 0.52 for BERT 
(Table 5) and 0.31 and 0.41 for PetBERT (Table 6). Despite this, they are also dissimilar to each other with a 
mean τ of just 0.37 (Table 4), which suggests that even if the remaining features are similarly small in magnitude 
(from Fig. 2), they are not often in a similar order. For both text models, the two most similar combination 
method pairs are [Weighted-Ensemble w = 0.50, Weighted-Ensemble w = 0.25] and [Weighted-Ensemble w = 0.50, 
Weighted-Ensemble w = 0.75]. With a shared methodology, similarity is expected: with only the weighting on 
the prediction changing, it will only be the ordering of the tabular features relative to the text features that dif-
fer. Table 4 shows us how much of a difference changing text model has when fixing the combination method, 

(2)τ =
Number of concordant pairs−Number of discordant pairs

Total number of pairs

Table 4.   Mean (SD) Kendall’s τ comparing the φ rankings of BERT vs PetBERT for each of the five 
combination methods. For each entry, we calculate Kendall’s tau for each of the n = 1000 instances and report 
the mean (SD). WE refers to Weighted-Ensemble with w indicating text model weighting. Taking all n = 5000 
instances together, we report the mean (SD) Kendall’s Tau under total.

Method Comparison Mean (SD)

All-Text BERT vs PetBERT 0.37 (0.23)

WE 25 BERT vs PetBERT 0.81 (0.11)

WE 50 BERT vs PetBERT 0.81 (0.14)

WE 75 BERT vs PetBERT 0.80 (0.18)

Stack BERT vs PetBERT 0.70 (0.15)

Total BERT vs PetBERT 0.70 (0.24)

Table 5.   Mean (SD) Kendall’s τ comparing the φ rankings of each of the combination methods against each 
other when BERT is the text model. Self-comparisons are trivially perfectly correlated ( τ = 1 ) and are omitted. 
For each entry, we calculate Kendall’s tau for each of the n = 1000 instances and report the mean (SD). WE 
refers to Weighted-Ensemble with w indicating text model weighting.

BERT, by method All-Text WE 25 WE 50 WE 75

WE 25 0.43 (0.19)

WE 50 0.50 (0.21) 0.73 (0.16)

WE 75 0.52 (0.24) 0.56 (0.20) 0.70 (0.19)

Stack 0.45 (0.19) 0.71 (0.14) 0.64 (0.17) 0.53 (0.20)

Table 6.   Mean (SD) Kendall’s τ comparing the φ rankings of each of the combination methods against each 
other when PetBERT is the text model. Self-comparisons are trivially perfectly correlated ( τ = 1 ) and are 
omitted. For each entry, we calculate Kendall’s tau for each of the n = 1000 instances and report the mean (SD). 
WE refers to Weighted-Ensemble with w indicating text model weighting.

PetBERT, by method All-Text WE 25 WE 50 WE 75

WE 25 0.31 (0.19)

WE 50 0.36 (0.21) 0.72 (0.15)

WE 75 0.41 (0.25) 0.55 (0.19) 0.71 (0.19)

Stack 0.33 (0.21) 0.66 (0.15) 0.66 (0.17) 0.55 (0.20)
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and we see high mean scores of 0.80–0.81 for each of the Weighted-Ensembles, indicating a similar ordering of 
features for a given instance.

Comparing the two most influential features
Here, we look at another way of comparing the different models; we aim to get a more general idea of how the 
two most influential features (clinical narrative, a text feature, and age at consult, a tabular feature) are treated 
using each of the five combination methods. For each of the 1000 instances, we examine the difference in feature 
importance between these two features. In Fig. 3a, we plot the difference between these two for each of the five 
combination methods when TM=PetBERT and repeat for TM=BERT in Fig. 3b. Once more, we can see greater 
importance being placed on clinical narrative than age at consult for PetBERT when compared to BERT, with all 
combination methods scoring a higher median difference. For All-Text experiments, we see far longer tails in the 
difference distributions than the other methods. This again provides evidence of the importance of both features, 
differences further away from 0 indicating many cases where age at consult is key, clinical narrative is not, and 
vice versa. Furthermore, we also confirm the increased reliance on text features, in this case, clinical narrative, 
with the difference growing more positive as w increases from 0.25 through to 0.75.

Top phrases and tabular values
So far, we have considered all features as a whole, summing SHAP values for individual words to provide an 
overall score of importance for the entire feature, comparing text features to tabular features. We have seen clinical 
narrative, a text feature, as the most influential in Fig. 2. In a text-only context, one can use the original SHAP 
library to identify individual word pieces that are the most influential across an entire set of predictions. Using 
the multimodal SHAP for the first time, we can directly compare individual words to individual tabular feature 
values. To avoid analysing fragments of words, we set a grouping threshold such that word pieces are grouped 
into words and phrases. Using the optimal model, PetBERT Weighted-Ensemble, w = 0.50, we look at the 1000 
instances and find the phrases and tabular values that were the most influential. As a comparison, we also repeat 
the analysis for BERT Weighted-Ensemble, w = 0.50. For those that appear more than once, we take a mean aver-
age. The top and bottom five items are found in Table 7, where top and bottom refer to those that contribute 
the most towards predictions of alive and dead, respectively. Looking more broadly at the top and bottom 100 
phrases and tabular values, we see the tabular feature age at consult dominates. For the PetBERT model, of the 
top 100 entries, all 100 were based on low age at consult values and 89 entries from the bottom 100 were based 
on high age at consult values. Similarly in the BERT model, 99 out of the top 100 and 89 of the bottom 100 were 
from low and high age at consult values, respectively. In Fig. 2, we identified that age at consult was an important 
feature, and here we indeed confirmed that older animals are more likely to be found within predictions of dead 
and vice verse for predictions of alive. The median age at consultation was 7.1 for the highest and 13.58 for the 
lowest. The median average for age at consult in the dataset was calculated to be 6.29.

Continuing with our analysis of the top performing PetBERT model (Weighted-Ensemble w = 0.50) and its 
BERT equivalent, we assess which types of phrases are most influential and how they compare to tabular features 
other than age at consult. We remove the dominant tabular feature and examine the new top 100 and bottom 100 
lists of phrases and values. To summarise this information, we group each term into 10–12 high-order categories 
for each list. We count the items in each category and report the seven most populous groups for the top and 
bottom list, both for PertBERT and BERT. These results are displayed in Table 8, along with examples that typify 
each group. This representation conveys that the clinical language focused on by each model differs significantly, 
even if they fall under the same designated category.

We further illustrate this point with a specific example shown in Fig. 4, once more using Weighted-Ensemble, 
w = 0.50. In this case, the true outcome was alive; the PetBERT Weighted-Ensemble predicted this correctly, 
whereas the BERT equivalent did not. We see that both text models recognise “no evidence fleas” as a positive 
sign. Similarly, erythematous—a typically non-serious reddening of the skin—was contributed towards an alive 
prediction for both models. However, the critical difference was that PetBERT identified “SCC L” as shorthand 
for Squamous Cell Carcinoma, Left (ear) and a clear indicator that this particular animal is not likely to survive. 
The BERT model did not recognise this as the case and, in fact, regarded “SCC L” as a positive sign for this animal.

Discussion
An abundance of data lies within the vast volumes of electronic health records collected by initiatives such as 
SAVSNET. These records extend far beyond textual narratives alone, offering a diversity of modalities to be 
explored. Nevertheless, the path to harnessing the full potential of these rich datasets is challenging. While 
immensely powerful, the nature of deep learning frameworks becomes a source of complexity in the context 
of multimodality predictions. The principal challenge in this endeavour is the innate need for explainability 
within these frameworks, limiting our ability to extract comprehensive insights from complex AI models and 
their predictions. This is of paramount importance in the clinical domain, where transparency and interpret-
ability are critical for gaining trust and acceptance among healthcare professionals and regulatory bodies. This 
paper continues and applies our prior research to this field, allowing us to get insight into a host of multimodal 
methods for the first time. We use our multimodal masking framework designed to engage in feature masking 
based on their respective modalities, ensuring uniform and consistent treatment of features, therefore fostering 
predictability in unimodal and multimodal contexts. This addresses the challenge of generating SHAP explana-
tions for multimodal inputs, extending beyond the traditional unimodal context. In this study, we applied our 
framework to a text-tabular dataset of EHRs sourced from first-opinion veterinary practices across the United 
Kingdom to understand the features associated with mortality.
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We examined the level of importance assigned to each feature and found a diverse set of preferences between 
combination methods, but overall, a strong preference for the free-text clinical narrative and the tabular feature 
age at consult. For all combination methods tested, PetBERT found an increased relative importance for clinical 
narrative when compared to BERT, a difference most pronounced in the Stack-Ensembles. The Weighted-Ensem-
bles appeared similar to each other, with no other comparison between combination methods scoring higher 
than that between the Weighted Emsembles w = 0.50 and w = 0.25. This is consistent with what we expect as the 
same model structure is used, differing by a linear transformation. More generally, we found that changing the 
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Figure 3.   The difference in feature importance (SHAP) between the clinical narrative free-text field and age, 
plotted for PetBERT (a) and BERT (b), for each of the 1000 instances, for each of the five combination methods. 
The highly significant p-values (both p = 0.00) for both Kruskal–Wallis tests indicate that the median differences 
for each of the combination methods are not the same; 38% and 37% of the variance in the differences are down 
to the changing of combination method for (a) and (b) respectively. Comparing (a) and (b), we see higher 
median differences for PetBERT, indicating a higher reliance on the clinical narrative than BERT. Assessing 
combination methods, we see the preference for the text feature increase as w, the text model weighting, 
increase.
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combination method had a greater impact on which features were attended to than changing the text model. 
For this particular dataset, both the underlying text and tabular models scored similarly well. Therefore, the dif-
ferences in F1 scores for the ensemble models were also similar despite differing features contributing. A much-
reduced importance for other tabular features in the All-Text models suggests that information contained in these 
features, such as a cancer diagnosis in neoplasms, is already broadly covered in the free-text clinical narrative 
and is therefore ignored by the text models. However, in the same vein, we suggest that not all information was 
captured as results in Tables 2 and 3 show that for both text models, All-Text was outperformed by Weighted-
Ensemble w = 0.50. The ICD labels represent a broad clinical history of a given animal; therefore, there will be 
instances where there is an overlap of events within the ICD set and the free-text narrative and other times where 
the label represents clinical events from many years prior.

Unsurprisingly, there was a notable enhancement in model performance arising from the additional pre-
training of PetBERT on 500 million tokens from veterinary clinical narratives when compared to the standard 
BERT-base model. We observed F1 and accuracy performance improvements of 2% compared to the BERT-base 
model employing the same evaluation strategy within our best-performing method. While this outcome aligns 
with our initial expectations, our methodological analysis offers insight into the divergent utilisation of distinct 
data modalities within the models. To understand the performance of both models on a more granular level, we 
explored the types of words, phrases and tabular values that were most influential for each model. This was over-
whelmingly predominated by age at consult. A general and expected trend emerged, suggesting older ages were 
more likely to die than lower ages. To better discern the difference between BERT and PetBERT, we looked at the 
words, phrases and tabular values without the presence of age at consult. Notably, there were overlaps observed 
here; for instance, discussions around vaccination were a common theme associated with animals predicted to be 
alive within the next 28 days. This emphasis between the two models aligns with the inherent logic that one typi-
cally would not vaccinate a severely ill animal. Other examples include references to “no concerns” categorised 
into the “physical examination findings”, which appeared as the third most common category of phrases in both 
PetBERT and BERT. Phrases such as “other NAD [Nothing Abnormal Detected]” and “CE [Clinical Examination] 
unremarkable” are unlikely to be used for animals expected to die imminently. Conversely, for words and phrases 
attributed to an animal approaching death, we observed a shared emphasis on discussions related to symptoms 
and health conditions. However, the significance of this indicator was more pronounced in the BERT model than 
in PetBERT. This approach also revealed that PetBERT exhibits a heightened “understanding” across veterinary 
clinical free-text. This advantage enables PetBERT to interpret the veterinary clinical language associated with 
these subject matters more effectively than regular English, on which BERT was initially trained. Distinctly, 
PetBERT selected more definitive diagnoses as a more significant indicator, such as in “mammary tumours”. 
Overall, words and phrases around cancers and mass growths emerged as noteworthy indicators in both models, 
although more so in PetBERT. Although both models identified signs of vaccination as a positive indication, the 
words and phrases differed. PetBERT selected specific vaccination names such as “lepto4” and “nobivac tricat”, 
whereas BERT used more generalised terms such as “booster” and “vaccine”. When thinking about the general-
ised corpora that BERT was trained on, there is a frequent theme where veterinary-specific terminology is not 
well understood, but phrases shared with human clinical medicine are present. Another example is within the 
“medications” category, BERT’s utilisation of drug names “steroids”, “butorphanol”, and “prednisolone” are all 
authorised drugs used frequently in human medicine. However, drugs such as “Vivitonin”, which was utilised by 
PetBERT, are authorised solely for dogs in the UK. Increased comprehension of phrases pertinent to diagnostic 
diseases, drug names, and diagnostic tests could attest to PetBERT’s superior clinical proficiency.

The framework we have employed is fundamentally underpinned by SHAP and transformers, both of which 
are computationally expensive. This computational burden can lead to prolonged processing times, potentially 
limiting the scalability of our approach, especially when working with larger datasets or in real-time clinical 

Table 7.   Phrases or instances of tabular features with the highest and lowest SHAP values across all instances 
for the best performing model, PetBERT Weighted-Ensemble w = 0.50, and the BERT equivalent. A positive 
number indicates that the phrase contributes towards a prediction of alive, whereas a negative number 
contributes towards a prediction of dead. Left: PetBERT Weighted-Ensemble w = 0.50. Right: BERT Weighted-
Ensemble w = 0.50.

SHAP value Phrase or tabular value SHAP value Phrase or tabular value

0.25 Age_at_consult = 0.61 0.25 Age_at_consult = 0.61

0.24 Age_at_consult = 1.55 0.25 Alert and responsive hydration normal.

0.24 Age_at_consult = 0.37 0.24 Age_at_consult = 1.55

0.24 Age_at_consult = 0.93 0.24 Age_at_consult = 0.37

0.24 Age_at_consult = 1.19 0.24 Age_at_consult = 0.93

... ... ... ...

−0.15 For older cat −0.16 Hearing with old age

−0.19 Of nasal tumour −0.18 Down with age

−0.23 Hearing with old age −0.20 QOL etc

−0.24 His age -0.20 Age related?

−0.28 Generally slowing down with age −0.21 Some muscle mass loss but
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settings. In the context of All-Text, a single style of string template was the exclusive choice. In future investiga-
tions, exploring the impact of diverse template styles on explanations could be beneficial. The initial study devel-
oped a classifier that identified animals that have died with an F1 score exceeding 98.3%. Both the previous study 
and this study characterised the outputs for use within the prediction of mortality risk modelling. Therefore, it 
is likely that some data used within this study was incorrectly misclassified. While this level of misclassification 

Table 8.   Word and phrases with highest and lowest feature importance (SHAP) values, grouped by high-
level category. [High/low] represents those that contribute most to a prediction of [alive/dead]. Phrases from 
BERT Weighted-Ensemble, w = 0.50 and PetBERT Weighted-Ensemble, w = 0.50 are found on the left and 
right respectively. PetBERT’s increase in performance can be attributed to its greater likelihood of identifying 
shorthand or medical terms, as demonstrated by the increased frequency and greater complexity of words in 
the “Medications” and “Vaccinations” categories. N.B. ”DUDE” ’defecating, urinating, drinking and eating’, 
”BAR” ’bright and responsive’, ”NAD” nothing abonroaml detected, ”CE” ’clinical examination’, ”f/w” flea and 
wormer treatment, ”kc” kennel cough ”nobivac tricat” = vaccine for feline calicivirus, feline herpes virus type 
1 and feline panleucopenia virus, ”rhd” rabbit haemorrhagic disease vaccine, ”lepto4” Canine leptospirosis 
vaccine, ”DHP” distemper, hepatitis (canine adenovirus) and canine parvovirus vaccine, ”BCS” ’body 
condition score’.

Contributing most to a prediction of alive

BERT Weighted-Ensemble, w =0.50 PetBERT Weighted-Ensemble, w=0.50

Category N Example Category N Example

Symptoms and health conditions 22 “hydration good”, “moulting”, “DUDE 
normal” “DUDE all ok” Symptoms and health conditions 18 “spay wound”, “checks over fine”, “No 

concerns”, “BAR”

Veterinary treatments and procedures 15 “express anal glands”, “skin improving”, 
“deep oral exam”, “trimmed” Medications 15 “worming”, “endectrid”, “easecto”, 

“quantex”

Physical examination findings 11 “ears are fine”, “coat good”, “nothing 
abnormal detected”, “perineum normal” Physical examination findings 14 “abdo palp NAD”, “otherwise NAD”, “CE 

unremarkable”

Medications 8 “advise drops”, “analgesia” “wormer”, 
“spot on” Advice given to pet owners 13 ”advised joint supplements”, “adv re 

neuter”, “discussed kc vaccine”

Advice given to pet owners 7 “explained to owner”, “Advised regular 
bathing”, “bring back if concerned” Vaccinations 12 “nobivac tricat”, “rhd”, “lepto4”, “DHP/ 

L4 + KC given”

Vaccination 6 “administered vaccine”, “vaccine”, 
“booster given” Weight and body condition score 6 “BCS 5/9 good growth.”, “nice weight”, 

“28kg”, “8kg”

Pet Behaviour 6 “very well behaved”, “biting”, “not biting, 
“demean” Dental conditions and treatments 5 “teeth are great”, “Dentition” “teeth 

good”, “teeth clean”

Contributing most to a prediction of dead

Category N Example Category N Example

Symptoms and health conditions 25 “muscle mass loss”, “dysuria”, “consti-
pated”, “vomiting” Diagnoses 24 “mammary tumours”, “Bladder cystitis”, 

“osteoarthritis”

Age related issues 14 “age-related hearing loss”, “old dog”, 
“given age”, “getting very old” Symptoms and health conditions 14 “mobility issues”, “Blind”, “Weak”, 

“ulcerated”

Food Diet 10 “not eating for 3 days”, “drinking ok”, 
“not eating well” “been eating more”

Quality of life and euthanasia considera-
tions 13 “euthanase”, “palliative”, “medical man-

agement”, “quality of life”

Owner’s observations and concerns 10 “O reports is drinking”, “o aware decline 
inevitable”, “o concerned coughing” Medical procedures further testing 10 “bloods”, “biopsy results”, “Ultrasound”, 

“drain”

Medications 8 “Continue with steroid”, “butorphanol”, 
“prescription”, “prednisolone” Age Related Issues 8 “ slowing down with age”, “age related?”, 

“old age”, “surgery too risky with age”

Weight and body condition score 8 “seems to have lost weight”, “lost weight”, 
“lost 100 g” Medications 6 “prednisolone”, “mirtazapine”, “chemo”, 

“Vivitonin”

Vitals and physical examination findings 7
“Bladder not palpable”, “exam - senile”, 
“Strong pulses”, “R thyroid slightly 
enlarged”

Owner’s observations and concerns 6
“o aware decline inevitable”, “doesn’t 
want investigation”, “o mentioned 
happier”

Figure 4.   Contrasting explanations for an example where BERT (a) was incorrect and PetBERT (b) was correct, 
both Weitghed-Ensemble, w = 0.50. Words and phrases coloured [red/blue] indicate those that the model found 
to contribute towards a prediction of [alive/dead]. Both ensembles share an identical tabular model; therefore, 
we show the subset of the input from the clinical narrative to better exhibit the difference in explanations.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14217  | https://doi.org/10.1038/s41598-024-64551-1

www.nature.com/scientificreports/

is unlikely to impact the overall findings substantially, it is a point of consideration when interpreting individual 
predictions or decisions based on the model’s output. Furthermore, the dataset used in this study was sourced 
from participating veterinary practices. Consequently, the findings presented here may only partially represent 
the broader UK companion animal population. As the national coverage of participating practices within the 
Small Animal Veterinary Surveillance Network (SAVSNET) expands, these issues of coverage bias may be miti-
gated. Throughout our analysis, we have used the F1 score as the principal measure for a model’s quality due to it 
being a balance between precision and recall. We believe this provides models which are well-rounded, however, 
we note that some may prefer to optimise for precision, recall or another metric entirely which may affect which 
experiments are the most effective.

To conclude, this study investigated the complex dynamics governing the interaction between deep learning 
models and data modalities in the context of veterinary clinical EHRs. The findings suggest that the chang-
ing modality combination method has a more substantial influence on which features models find important, 
whereas both text models in this study tended to rank similar features as important. Additionally, PetBERT, 
having undergone additional pre-training, demonstrated enhanced comprehension of phrases related to cancer, 
drug names, and diagnostic tests, suggesting its superior proficiency in veterinary clinical language compared to 
BERT. The study highlights the capacity of language models to extract valuable insights from clinical narratives, 
providing contextual factors that inform predictions regarding animal well-being. The comparative analysis of 
both modalities within a uniform framework has significantly enabled the comprehension and interpretation 
of the overall model prediction and enabled a per-input feature comparison, regardless of whether that be a text 
or tabular value.

Data availability
The datasets generated and analysed during the current study are not publicly available due to privacy concerns 
around sensitive owners’ information but are available from the corresponding author on reasonable request.
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